Motion of nanobeads proximate to plasma membranes during single particle tracking.
نویسنده
چکیده
Drag and torque on nanobeads translating within the pericellular layer while attached to glycolipids of the plasma membrane are calculated by a novel hydrodynamic model. The model considers a bead that translates proximate to a rigid planar interface that separates two distinct Brinkman media. The hydrodynamic resistance is calculated numerically by a modified boundary integral equation formulation, where the pertinent boundary conditions result in a hybrid system of Fredholm integrals of the first and second kinds. The hydrodynamic resistance on the translating bead is calculated for different combinations of the Brinkman screening lengths in the two layers, and for different viscosity ratios. Depending on the bead-membrane separation and on the hydrodynamic properties of both the plasma membrane and the pericellular layer, the drag on the bead may be affected by the properties of the plasma membrane. The Stokes-Einstein relation is applied for calculating the diffusivity of probes (colloidal gold nanobeads attached to glycolipids) in the plasma membrane. This approach provides an alternative way for the interpretation of in vitro observations during single particle tracking procedure, and predicts new properties of the plasma membrane structure.
منابع مشابه
Appeared in the Bulletin of Mathematical Biology 71, 8, 2009, 1967-2024. Time Series Analysis of Particle Tracking Data for Molecular Motion on the Cell Membrane
Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملMotion in Cell Membranes, General Random Walks and Anomalous Diffusion
Cell membranes display a range of receptors that bind signaling molecules and initiate transmembrane responses. Strict spatial and temporal regulation of signal transduction from the cell membrane to the cytoplasm and nucleus is crucial for cell survival, differentiation, proliferation and other activities. Single particle tracking experiments provide detailed data on the motion of membrane mol...
متن کاملHigh-resolution models of motion of macromolecules in cell membranes
The path of a macromolecule on a cell membrane is modeled by a sum of independent identically distributed random variables. Random variables with simple discrete distribution functions capture some important aspects of the jump or hop diffusion reported from single particle tracking experiments that measure the motion of single molecules on a cell membrane. The detail provided by the distributi...
متن کاملHigh-Speed Single-Particle Tracking of GM1 in Model Membranes Reveals Anomalous Diffusion due to Interleaflet Coupling and Molecular Pinning
The biological functions of the cell membrane are influenced by the mobility of its constituents, which are thought to be strongly affected by nanoscale structure and organization. Interactions with the actin cytoskeleton have been proposed as a potential mechanism with the control of mobility imparted through transmembrane "pickets" or GPI-anchored lipid nanodomains. This hypothesis is based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of mathematical biology
دوره 64 3 شماره
صفحات -
تاریخ انتشار 2002